如图①,正三角形边长2,为边上的高,、分别为、中点,现将沿翻折成直二面角,如图②(1)判断翻折后直线与面的位置关系,并说明理由(2)求二面角的余弦值(3)求点到面的距离图 ① 图 2
((本小题满分12分)已知在区间[0,1]上是增函数,在区间上是减函数,又(Ⅰ)求的解析式;(Ⅱ)若在区间(m>0)上恒有≤x成立,求m的取值范围.
((本小题满分12分) 已知数列中,,且当时,函数取得极值。(Ⅰ)求数列的通项公式;(Ⅱ)数列满足:,,证明:是等差数列,并求数列的通项公式通项及前项和.
(已知长方体ABCD-中,棱AB=BC=3,=4,连结, 在上有点E,使得⊥平面EBD ,BE交于F. (1)求ED与平面所成角的大小;(2)求二面角E-BD-C的大小.
(本小题满分12分)栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,.(1)求甲、乙两种果树至少有一种果树成苗的概率;(2)求恰好有一种果树能培育成苗且移栽成活的概率.
(本小题满分10分)在中,已知内角,边.设内角,周长为.(1)求函数的解析式和定义域; (2)求的最大值.