(本小题满分14分)已知函数,其中实数是常数.(1)已知,,求事件A“”发生的概率;(2)若是上的奇函数,是在区间上的最小值,求当时的解析式.
(本题满分12分)已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于和,且,,求椭圆的方程.
(本题满分10分)已知四棱锥的底面为直角梯形,//,,底面,且.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值的大小.
(本题满分10分)求圆心在直线上,且经过圆与圆的交点的圆方程.
(本题满分10分) 若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
(本小题满分14分)已知函数,函数的最小值为,(1)当时,求(2)是否存在实数同时满足下列条件:①;②当的定义域为 时,值域为?若存在,求出的值;若不存在,请说明理由。