(本小题共14分)已知,函数(1)当时,求使成立的的集合;(2)求函数在区间上的最小值.
在平面直角坐标系中,过定点作直线与抛物线()相交于两点.(I)若点是点关于坐标原点的对称点,求面积的最小值;(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.
已知双曲线的中心在原点,对称轴为坐标轴,其一条渐近线方程是,且双曲线过点.(1)求此双曲线的方程;(2)设直线过点,其方向向量为,令向量满足.双曲线的右支上是否存在唯一一点,使得. 若存在,求出对应的值和的坐标;若不存在,说明理由.
设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且(1)求椭圆C的离心率;(2)若过A、Q、F三点的圆恰好与直线l:相切,求椭圆C的方程.
已知中心在原点,左、右顶点A1、A2在x轴上,离心率为的双曲线C经过点P(6,6),动直线l经过△A1PA2的重心G与双曲线C交于不同两点M、N,Q为线段MN的中点。 (1)求双曲线C的标准方程 (2)当直线l的斜率为何值时,。
已知椭圆的离心率为,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于A、B两点。(1)求椭圆的标准方程;(2)设M为右顶点,则直线AM、BM与准线l分别交于P、Q两点,(P、Q两点不重合),求证: