在平面直角坐标系中,过定点作直线与抛物线()相交于两点.(I)若点是点关于坐标原点的对称点,求面积的最小值;(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.
已知是椭圆的左、右焦点,过点作倾斜角为的动直线交椭圆于两点.当时,,且.(1)求椭圆的离心率及椭圆的标准方程;(2)求△面积的最大值,并求出使面积达到最大值时直线的方程.
已知函数.(1)解关于的不等式;(2)若对,恒成立,求的取值范围.
.已知直线的参数方程为(t为参数),曲线C的极坐标方程是以极点为原点,极轴为x轴正方向建立直角坐标系,点,直线与曲线C交于A,B两点.(1)写出直线的普通方程与曲线C的直角坐标方程;(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值.
某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求分数在[90,100]之间的份数的数学期望.
已知函数.(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.