(满分17分) 已知,函数.(1)当时,求所有使成立的的值;(2)当时,求函数在闭区间上的最大值和最小值;(3) 试讨论函数的图像与直线的交点个数.
(本小题满分12分)杭州某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.哪一种方案较为合算?请说明理由.
(本小题满分12分)在如图所示的几何体中,面为正方形,面为等腰梯形,//,,,.(1)求证:平面;(2)求四面体的体积; (2)线段上是否存在点,使//平面?证明你的结论.
(本小题满分12分)数列满足(1)证明:数列是等差数列;(2)设,求数列的前项和
(本小题满分12分)已知平面向量若函数.(1)求函数的最小正周期;(2)将函数的图象上的所有的点向左平移1个单位长度,得到函数的图象,若函数在上有两个零点,求实数的取值范围.
(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.(1)求an和bn;(2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.