(满分10分)一个半径为的球内切于一个底面半径为的圆锥。(1)求圆锥的表面积与球面积之比;(2)求圆锥的体积与球体积之比。
已知集合U={x|>-2且x∈Z},集合A={x|ax-1=0},集合B={x|-(a+3)x+2a+2=0),若CUA=B,求a的值.
已知中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点. (1)求椭圆的标准方程; (2)若过点的直线(斜率不等于零)与椭圆交于不同的两点(在 之间),与面积之比为,求的取值范围.
已知函数的图象为曲线C。 (1)若曲线C上存在点P,使曲线C在P点处的切线与轴平行,求的关系; (2)若函数时取得极值,求此时的值; (3)在满足(2)的条件下,的取值范围。
已知数列是首项为,公比的等比数列,设,数列. (1)求数列的通项公式;(2)求数列的前n项和Sn.
已知 (1)求函数的最小正周期; (2)当的最大值及最小值。