(满分12分)已知满足直线。(1)求原点关于直线的对称点的坐标;(2)当时,求的取值范围。
【选修4-5:不等式选讲】设函数f(x)=|2x﹣1|﹣|x+2|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.
【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.
【选修4-1:几何证明选讲】如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.(1)求证:DE是圆O的切线;(2)求证:DE•BC=DM•AC+DM•AB.
已知a是实常数,函数.(1)若曲线在处的切线过点A(0,﹣2),求实数a的值;(2)若有两个极值点(),①求证:;②求证:.
在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为的两条直线,交C1于A,B两点(点A,B异于点P),若,且直线AB与圆相切,求△PAB的面积.