(本小题满分10分) 已知函数,且, (1)求函数的解析式;(2)判断函数在定义域上的单调性,并证明;(3)求证:方程至少有一根在区间.
求下列各式的值:(1); (2).
已知以点为圆心的圆与轴交于点O、A,与轴交于点O、B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线与圆交于点M、N,若|OM|=|ON|,求圆的方程;(3)在(2)的条件下,设P、Q分别是直线:和圆上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.(1)求证:BC⊥A1D.(2)求证:平面A1BC⊥平面A1BD.(3)求三棱锥A1-BCD的体积.
已知点 (0,5)及圆:. (1)若直线过且被圆C截得的线段长为4,求的方程; (2)求过点的圆的弦的中点的轨迹方程.