(I)已知,求证:(II)已知正数a、b、c满足,求证:
已知等差数列的前项和为,且. (1)求数列的通项公式; (2)记,的前项和为,求 .
如图,已知直线与抛物线交于两点,点的坐标为,交于点,抛物线的焦点为.(1)求的值;(2)记条件(1)所求抛物线为曲线,过点作两条斜率存在且互相垂直的直线,设与曲线相交于点,与曲线相交于点,求·的最小值.
已知函数其中为参数.(1)记函数,讨论函数的单调性;(2)若曲线与轴正半轴有交点且交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有.
已知正项等比数列,首项,前项和为,且,,成等差数列.(1)求数列的通项公式;(2)求数列的前项和.
已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点.(1)求证:// 平面;(2)求截面与底面所成二面角的大小.