(8分)如图,四棱锥底面是正方形且四个顶点在球的同一个大圆(球面被过球心的平面截得的圆叫做大圆)上,点在球面上且面,且已知。(1)求球的体积;(2)设为中点,求异面直线与所成角的余弦值。
全集,如果,则这样的实数是否存在?若存在,求出;若不存在,请说明理由。
(本小题 满分14分)已知是偶函数,且上满足 ①对任意,②当。 (1)求的值,并证明当 (2)利用单调性定义,判断在()上的单调性。 (3)上恒成立,求实数的取值范围。
(本小题满分12分)已知是定义在(-∞,+∞)上的函数,且满足 (1)求实数a,b,并确定函数的解析式 (2)用定义证明在(-1,1)上是增函数;
(本小题满分12分)已知函数. (Ⅰ)判断并证明函数的奇偶性; (Ⅱ)利用函数的图像指出其在上的单调性.
(本小题满分12分) 已知函数在有最大值和最小值,求、的值。