.(本小题满分12分)如图,在正方体中,E、F分别是中点。(Ⅰ)求证:;(Ⅱ)求证:;(III)棱上是否存在点P使,若存在,确定点P位置;若不存在,说明理由。
(本小题满分14分) 如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米. (Ⅰ)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(Ⅱ)若AN的长度不小于6米,则当AM、AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(本小题满分14分) 在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3. (1)求数列{an}与{bn}的通项公式; (2)令,求数列{cn}的前n项和Tn.
(本小题满分12分) 某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
(本小题满分12分) 在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c=, 且 (1)求角C的大小; (2)求△ABC的面积.
(本小题满分14分)设函数,其中为常数.(1)当时,判断函数在定义域上的单调性;(2)若函数的有极值点,求的取值范围及的极值点;(3)求证对任意不小于3的正整数,不等式都成立.