(7分)已知定点,动点在直线上运动,当线段最短时,求的坐标.
(本小题满分12分)如图,已知四边形ABCD为正方形,平面,∥,且(1)求证:平面;(2)求二面角的余弦值.
(本小题满分12分)由于我市去年冬天多次出现重度污染天气,市政府决定从今年3月份开始进行汽车尾气的整治,为降低汽车尾气的排放量,我市某厂生产了甲、乙两种不同型号的节排器,分别从两种节排器中随机抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级如表格所示
若把频率分布直方图中的频率视为概率,则(1)如果从甲型号中按节排器等级用分层抽样的方法抽取10件,然后从这10件中随机抽取3件,求至少有2件一级品的概率;(2)如果从乙型号的节排器中随机抽取3件,求其二级品数的分布列及数学期望.
(本小题满分12分)已知函数,其中A、B、C是的三个内角,且满足,.(1)求的值;(2)若,且,求的值.
(本小题满分18分)已知数列,.(1)求证:数列为等比数列;(2)数列中,是否存在连续的三项,这三项构成等比数列?试说明理由;(3)设,其中为常数,且,,求.
(本小题满分18分)已知函数;(1)判断函数奇偶性,并说明理由;(2)求函数的反函数;(3)若函数的定义域为[,],值域为,,并且在,上为减函数.求的取值范围;