为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及的表达式.(2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知圆的圆心为原点,且与直线相切。 (1)求圆的方程; (2)过点(8,6)引圆O的两条切线,切点为,求直线的方程。
设直线和圆相交于点。 (1)求弦的垂直平分线方程;(2)求弦的长。
如图,四棱锥P-ABCD的底面ABCD是平行四边形,M、N分别是AB、PC的中点,且.证明:平面PAD⊥平面PDC.
过点作直线,使它被两相交直线和所截得的线段恰好被点平分,求直线的方程.
已知函数的定义域为,当时,,且对于任意的,恒有成立. (1)求; (2)证明:函数在上单调递增; (3)当时, ①解不等式; ②求函数在上的值域.