某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式;(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.①求服药一次后治疗有效的时间是多长?②当时,第二次服药,问时药效能否持续?
设函数,其中. (1)当时,求在曲线上一点处的切线方程; (2)求函数的极值点。
已知数列的前项和为,且.数列为等比数列,且,. (1)求数列,的通项公式; (2)若数列满足,求数列的前项和.
某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示。 (1)请根据图中所给数据,求出的值; (2)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率; (3)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[ 60,70)内的人数,求X的分布列和数学期望.
已知函数. (1)若,求的最大值及此时相应的的值; (2)在△ABC中,、b、c分别为角A、B、C的对边,若,b =l,,求的值.
已知向量。 (1)若,求及; (2)若,求。