(本小题满分13分)设直线与圆交于两点,且关于直线对称,(Ⅰ)求的值;(Ⅱ)若直线与交两点,是否存在实数使得,如果存在,求出的值;如果不存在,请说明理由.
用半径为6cm的圆形铁皮剪出一个圆心角为的扇形,制成一个圆锥形容器,扇形的圆心角多大时,容器的容积最大.
已知曲线与在第一象限内交点为P (1)求过点P且与曲线相切的直线方程; (2)求两条曲线所围图形(如图所示阴影部分)的面积S.
设。 (1)求的值; (2)归纳{}的通项公式,并用数学归纳法证明。
用红、黄、蓝、白、黑五种颜色在田字形的四个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用。 (1)从中任选四种颜色涂色,有多少种不同的涂法? (2)按要求任意选色涂,共有多少种不同的涂法?
求证:(1); (2) +>+。