已知复数 z 1 满足 z 1 - 2 1 + i = 1 - i ( i 为虚数单位),复数 z 2 的虚部为2, z 1 · z 2 是实数,求 z 2 .
数列{an}中,a1=1,当时,其前n项和满足.(Ⅰ)求Sn的表达式;(Ⅱ)设,数列{bn}的前n项和为,求.
已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)求函数的单调递增区间;(Ⅲ)若时,的最小值为– 2 ,求a的值.
已知函数 (为实常数) .(1)当时,求函数在上的最大值及相应的值;(2)当时,讨论方程根的个数.(3)若,且对任意的,都有,求实数a的取值范围.
已知椭圆的左右两焦点分别为,是椭圆上一点,且在轴上方,.(1)求椭圆的离心率的取值范围;(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.
如图,在四棱柱中,已知平面,且.(1)求证:;(2)在棱BC上取一点E,使得∥平面,求的值.