如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1(1)若点E在SD上,且证明:平面;(2)若三棱锥S-ABC的体积,求面SAD与面SBC所成二面角的正弦值的大小
(本小题满分12分)如图,在中,,,为内一点,. (Ⅰ)若,求; (Ⅱ)若,求.
(本小题满分12分)如图,在三棱锥中,丄平面,丄,,. (Ⅰ)证明:丄; (Ⅱ)求二面角的正弦值; (Ⅲ)求三棱锥外接球的体积.
(本小题满分12分)已知数列的前和为,且满足:.等比数列满足:. (Ⅰ)求数列,的通项公式; (Ⅱ)设,求数列的前项的和.
(本小题满分12分)某体育赛事组委会为确保观众顺利进场,决定在体育场外临时围建一个矩形观众候场区,总面积为(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为的入口.现已知铁栏杆的租用费用为100元.设该矩形区域的长为(单位:),租用铁栏杆的总费用为(单位:元) (Ⅰ)将表示为的函数; (Ⅱ)试确定,使得租用此区域所用铁栏杆所需费用最小,并求出最小费用.
(本小题满分10分)已知向量,,,为锐角. (Ⅰ)求向量,的夹角; (Ⅱ)若,求.