(满分14分)设的定义域为,且如果为奇函数,当时,(1)求 (2)当时,求(3)是否存在这样的自然数使得当时,不等式有实数解.
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由。
如图,ABCD是边长为2的正方形,O是正方形的中心,PO底面ABCD,PO=,E是PC的中点。 求证:(1)PA∥平面BDE;(2)直线PA与平面PBD所成的角.
(本题满分8分) 求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且与直线2x + y + 5 = 0平行的直线方程。