一动圆与圆外切,同时与圆内切.(1)求动圆圆心的轨迹的方程;(2)在矩形中(如图),分别是矩形四边的中点,分别是(其中是坐标系原点)的中点,直线的交点为,证明点在轨迹上.
若不等式++…+>对一切正整数n都成立,猜想正整数a的最大值,并证明结论.
设数列{an}满足a1=3,an+1=an2-2nan+2,n=1,2,3,… (1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明); (2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.
用数学归纳法证明42n+1+3n+2能被13整除,其中n∈N*.
已知二次函数f(x)=ax2+bx+c的图象与x轴有两个不同的交点,若f(c)=0且0<x<c时,f(x)>0, (1)证明:是f(x)=0的一个根; (2)试比较与c的大小; (3)证明:-2<b<-1.
已知非零向量a,b,且a⊥b,求证:≤.