(本小题满分12分)已知函数 (1)求的单调递增区间;(2)求的最大值及取得最大值时相应的的值。
已知函数f(x)=loga(3-ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围.(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.
已知函数f(x)=-x+log2.(1)求f()+f(-)的值.(2)当x∈(-a,a],其中a∈(0,1),a是常数时,函数f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,请说明理由.
已知函数f(x)=a-是偶函数,a为实常数.(1)求b的值.(2)当a=1时,是否存在n>m>0,使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由.
已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值.(2)用定义证明f(x)在(-∞,+∞)上为减函数.(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实数a的取值范围.(2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式.