如图,椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左焦点为 F 1 ,右焦点为 F 2 ,离心率 e = 1 2 。过 F 1 的直线交椭圆于 A , B 两点,且 △ A B F 2 的周长为8
(Ⅰ)求椭圆 E 的方程。 (Ⅱ)设动直线 l : y = k x + m 与椭圆 E 有且只有一个公共点 P ,且与直线 x = 4 相较于点 Q 。试探究:在坐标平面内是否存在定点 M ,使得以 P Q 为直径的圆恒过点 M ?若存在,求出点 M 的坐标;若不存在,说明理由
已知函数, (1)求该函数的定义域和值域;(2)判断函数的奇偶性,并加以证明。
已知,函数的定义域为 (1)求; (2)求。
一个三棱柱的底面是边长3的正三角形,侧棱垂直于底面,它的三视图如图所示,. (1)请画出它的直观图;(2)求这个三棱柱的表面积和体积.
求值: (1) (2)
已知函数f(x)=+3-ax. (1)若f(x)在x=0处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)若关于x的不等式f(x)≥+ax+1在x≥时恒成立,试求实数a的取值范围.