某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。 (1) sin 2 13 ° + cos 2 17 ° - sin 13 ° cos 17 °
(2) sin 2 15 ° + cos 2 15 ° - sin 15 ° cos 15 °
(3) sin 2 18 ° + cos 2 12 ° - sin 18 ° cos 12 °
(4) sin 2 - 18 ° + cos 2 48 ° - sin 2 - 18 ° cos 2 48 °
(5) sin 2 - 25 ° + cos 2 55 ° - sin 2 - 25 ° cos 2 55 °
(Ⅰ)试从上述五个式子中选择一个,求出这个常数. (Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.
设是首项为,公差为的等差数列,是其前项和. (1)若,,求数列的通项公式; (2)记,,且、、成等比数列,证明:.
已知函数和的图象关于轴对称,且. (1)求函数的解析式; (2)解不等式.
已知,,. (1)若,求的值; (2)设,若,求、的值.
已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是。 (1)求双曲线的方程; (2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。
直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点. (1)求证:AC⊥B1C; (2)求证:AC1∥平面B1CD;