(本小题满分12分)已知是定义在上的奇函数,当时,。(1)求及的值;(2)求的解析式并画出简图;(3)写出的单调区间(不用证明)。
已知数列满足,(且). (Ⅰ)求数列的通项公式; (Ⅱ)令,记数列的前项和为,若恒为一个与无关的常数,试求常数和.
如图,已知直角梯形所在的平面垂直于平面,,,. (Ⅰ)点是直线中点,证明平面; (Ⅱ)求平面与平面所成的锐二面角的余弦值.
袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球. (I)若从袋中一次摸出2个小球,求恰为异色球的概率; (II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.
已知向量,,设函数,. (Ⅰ)求的最小正周期与最大值; (Ⅱ)在中,分别是角的对边,若的面积为,求的值.
设函数.(Ⅰ)当时,解不等式; (Ⅱ)当时,不等式的解集为,求实数的取值范围.