(本小题满分12分)已知是定义在上的奇函数,当时,。(1)求及的值;(2)求的解析式并画出简图;(3)写出的单调区间(不用证明)。
已知向量(Ⅰ)求的值;(Ⅱ)若,且,求实数t的值.
通常情况下,同一地区一天的温度随时间变化的曲线接近于函数的图像.2013年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为;最低温度出现在凌晨2时,最低温度为零下.(Ⅰ)请推理荆门地区该时段的温度函数的表达式;(Ⅱ)29日上午9时某高中将举行期末考试,如果温度低于,教室就要开空调,请问届时学校后勤应该送电吗?
已知函数(Ⅰ)求的值;(Ⅱ)若,求的值.
记函数的定义域为集合,函数的定义域为集合,集合.(Ⅰ)求集合,;(Ⅱ)若,求实数的取值范围.
计算:(Ⅰ)(Ⅱ)