设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。 对于A∈s(m,n),记ri(A)为A的第i行各数之和(1≤i≤m),CjA为A的第j列各数之和(1≤j≤n): 记K(A)为R1(A),R2(A),…,Rm(A),C1(A),C2(A),…,Cn(A)中的最小值。
对如下数表A,求K(A)的值;
(2)设数表A∈S(2,3)形如
求K(A)的最大值; (3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
已知函数(1)求函数的最小正周期和值域;(2)若,求的值.
已知函数.(1)求函数的单调区间;(2)若,设,是函数图像上的任意两点(),记直线AB的斜率为,求证:.
已知双曲线,分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线C的右支交于两点,其中点位于第一象限内.(1)求双曲线的方程;(2)若直线分别与直线交于两点,求证:;(3)是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由。
已知数列满足,,是数列的前n项和,且有.(1)证明:数列为等差数列;(2)求数列的通项公式;(3)设,记数列的前n项和,求证:.
如图,三棱柱侧棱与底面垂直,且所有棱长都为4,D为CC1中点.(1)求证:;(2)求二面角的余弦值.