设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。 对于A∈s(m,n),记ri(A)为A的第i行各数之和(1≤i≤m),CjA为A的第j列各数之和(1≤j≤n): 记K(A)为R1(A),R2(A),…,Rm(A),C1(A),C2(A),…,Cn(A)中的最小值。
对如下数表A,求K(A)的值;
(2)设数表A∈S(2,3)形如
求K(A)的最大值; (3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
已知函数的图象上两相邻最高点的坐标分别为和 (1)求与的值; (2)在△ABC中,a、b、c分别是角A、B、C的对边,且f (A )=2,求的值.
经市场调查,某种商品在120天内的日销售量和售价均为时间(天)的函数,日销售量与时间的关系用图(1)的一条折线表示,售价与时间的关系用图(2)的一条折线表示。 (Ⅰ)写出图(1)表示的日销售量(千克)与时间的函数关系史; 写出图(2)表示的售价(元 /千克)与时间的函数关系式; (Ⅱ)求日销售额(元)与时间的函数关系式,并求出日销售额最高的是哪一天?最高的销售额是多少?(注:日销售额=日销售量×售价)
已知函数(其中为常量且)的图像经过点. (Ⅰ)试求的值; (Ⅱ)若不等式在时恒成立,求实数的取值范围
如果函数f(x)的定义域为{x|x>0},且f(x)为增函数,f(x·y)=f(x)+f(y). (Ⅰ)求证: f()=f(x) -f(y); (Ⅱ)已知f(3)=1,且f(a)-f(a-1)>2,求a的取值范围
设二次函数在区间上的最大值、最小值分别是M、m,集合. (Ⅰ)若,且,求M和m的值; (Ⅱ)若,且,记,求的最小值