(本小题满分13分)设数列是有穷等差数列,给出下面数表: …… 第1行 …… 第2行 … … …… …… 第行上表共有行,其中第1行的个数为,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为.(1)求证:数列成等比数列;(2)若,求和.
已知直线与椭圆相交于两个不同的点,记与轴的交点为. (Ⅰ)若,且,求实数的值; (Ⅱ)若,求面积的最大值,及此时椭圆的方程.
在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当,求函数的值域.
在数列中,, (Ⅰ)求,判断数列的单调性并证明; (Ⅱ)求证:; (Ⅲ)是否存在常数,对任意,有?若存在,求出的值;若不存在,请说明理由.
设二次函数满足条件:①当时,的最大值为0,且成立;②二次函数的图象与直线交于、两点,且. (Ⅰ)求的解析式; (Ⅱ)求最小的实数,使得存在实数,只要当时,就有成立.