(本小题满分12分)数列的各项均为正数,为其前项和,对于任意,总有.(1) 求数列的通项公式;(2) 设正数数列满足,求数列中的最大项;
如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.
是边长为的等边三角形,,,过点作交边于点,交的延长线于点.(1)当时,设,用向量表示;(2)当为何值时,取得最大值,并求出最大值.
如图,已知锐角,钝角的始边都是轴的非负半轴,终边分别与单位圆交于点(1)求;(2)设函数,求的值域.
如图,平行四边形(按逆时针顺序排列),边所在直线的方程分别是,且对角线和的交点为(1)求点的坐标(2)求边所在直线的方程
如图,正方体的棱长为2,E,F,G分别是,的中点.(1)求证:FG//平面;(2)求FG与平面所成的角的正切值.