(本小题满分12分)一个盒子中装有6张卡片,上面分别写着如下6道极限题:①;②;③;④;⑤;⑥(1)现从盒子中任取两张卡片,求至少有一张卡片上题目极限不存在的概率;(2)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张记有极取不存在的题的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望。
如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。 (Ⅰ)求证:AE⊥PD; (Ⅱ)若直线PB与平面PAD所成角的正弦值为,求二面角E-AF-C的余弦值.
设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且=+2. (1)求数列{}的通项公式; (2)设数列{}的前n项和为,求证:≤<.
设x=1和x=2是函数f(x)=alnx+bx2+x的两个极值点 (1)求a,b的值; (2)求f(x)的单调区间。
已知函数的图象经过点. (1)求的值; (2)求在点处的切线方程.
已知椭圆中心在原点,焦点在x轴上,离心率e=,它与直线x+y+1=0交于P、Q两点,若OP⊥OQ,求椭圆方程。(O为原点)。