已知等差数列满足。(Ⅰ)求通项;(Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
.(本小题满分14分)已知数列,,其中是方程的两个根.(1)证明:对任意正整数,都有;(2)若数列中的项都是正整数,试证明:任意相邻两项的最大公约数均为1;(3)若,证明:。
.(本小题满分14分)已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动点。(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点,使得为定值?,若存在,求出的坐标,若不存在,说明理由。(Ⅲ)若在第一象限,且点关于原点对称,点在轴上的射影为,连接 并延长交椭圆于点,证明:;
.(本小题满分14分)已知函数 。(Ⅰ)若点(1,)在函数图象上且函数在该点处的切线斜率为,求的极大值;(Ⅱ)若在区间[-1,2]上是单调减函数,求的最小值
(本小题满分14分)已知四棱锥的底面是边长为4的正方形,,分别为中点。(1)证明:。(2)求三棱锥的体积。
(本小题满分12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1) 求n的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标为b. 记事件A表示“a+b=2”,求事件A的概率.