(本小题满分14分)已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点, 点T在线段F2Q上,并且满足 (1)设为点P的横坐标,证明; (2)求点T的轨迹C的方程; (3)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.
一个多面体的直观图和三视图如图所示,其中分别是的中点,是上的一动点. (1)求证: (2)当时,在棱上确定一点,使得//平面,并给出证明.
(本题满分12分)已知向量,, (1)若,求的值; (2)在中,角的对边分别是,且满足,求函数的取值范围.
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18,27,9个工厂. (1)求从A、B、C区中应分别抽取的工厂个数; (2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率。
在数列中,,其中. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和; (Ⅲ)证明存在,使得对任意均成立.
已知函数, (Ⅰ)若函数在上是减函数,求实数的取值范围; (Ⅱ)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由; (III)当时,证明: