(本小题满分10分)一位游客欲参观上海世博会中甲、乙、丙这3个展览馆,又该游客参观甲、乙、丙这3个展览馆的概率分别是0.4,0.5,0.6,且是否参观哪个展览馆互不影响,设表示该游客离开上海世博会时参观的展览馆数与没有参观的展览馆数之差的绝对值.(Ⅰ)求的概率分布及数学期望;(Ⅱ)记“函数在区间上单调递增”为事件,求事件的概率.
某巡逻艇在A处发现在北偏东距A处8处有一走私船,正沿东偏南的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向。
(3)(本小题满分7分)选修4—5:不等式选讲 已知函数,不等式在上恒成立. (Ⅰ)求的取值范围; (Ⅱ)记的最大值为,若正实数满足,求的最大值.
(2)(本小题满分7分)选修4—4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数),若圆在以该直角坐标系的原点为极点、轴的正半轴为极轴的极坐标系下的方程为. (Ⅰ)求曲线的普通方程和圆的直角坐标方程; (Ⅱ)设点是曲线上的动点,点是圆上的动点,求的最小值.
(1)(本小题满分7分)选修4—2:矩阵与变换 已知二阶矩阵有特征值及对应的一个特征向量. (Ⅰ)求矩阵; (Ⅱ)设曲线在矩阵的作用下得到的方程为,求曲线的方程.
(本小题满分14分) 已知函数的极值点为和. (Ⅰ)求实数,的值; (Ⅱ)试讨论方程根的个数; (Ⅲ)设,斜率为的直线与曲线交于两点,试比较与的大小,并给予证明.