(本小题满分12分)已知A、B是抛物线上的两点,O是抛物线的顶点,OA⊥OB。(I)求证:直线AB过定点M(4,0);(II)设弦AB的中点为P,求点P到直线的距离的最小值。
设函数. (1) 试问函数f(x)能否在x= 时取得极值?说明理由;(2) 若a= ,当x∈[,4]时,函数f(x)与g(x)的图像有两个公共点,求c的取值范围.
某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:
(Ⅰ)求回归直线方程;(Ⅱ)试预测广告费支出为10万元时,销售额多大?(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率。(参考数据: ,参考公式:回归直线方程,其中 )
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(Ⅰ)求证:DC平面ABC;(Ⅱ)设,求三棱锥A-BFE的体积.
已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为.(1)求的解析式;(2)在△ABC中,是角A、B、C所对的边,且满足,求角B的大小以及的取值范围.
在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中有放回地先后摸出两球,所得分数分别记为、,设为坐标原点,点的坐标为,记.(1)求随机变量=5的概率;(2)求随机变量的分布列和数学期望.