(本小题满分12分)为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列的前六项.(I)求等比数列的通项公式;(II)求等差数列的通项公式;(III)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
如图,四边形为菱形,,平面,为中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求三棱锥的体积.
已知数列是首项,公比的等比数列,设数列满足,数列满足.(Ⅰ)求证:数列为等差数列;(Ⅱ)求数列的前项和.
设函数.(Ⅰ)当时,解不等式;(Ⅱ)若的解集为,,求证:.
在直角坐标系中,已知圆的参数方程为为参数,以为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆的极坐标方程;(Ⅱ)已知直线,射线.射线与圆的交点为,与直线的交点为,求线段的长.
如图,为⊙外一点,交⊙于,,切⊙于为线段的中点,交⊙于,线段的延长线与⊙交于,连接.求证:(Ⅰ)∽;(Ⅱ).