(本小题满分12分)为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列的前六项.(I)求等比数列的通项公式;(II)求等差数列的通项公式;(III)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.将曲线C的极坐标方程化为直角坐标方程;设点的直角坐标为,直线与曲线C 的交点为,,求的值.
【2015高考湖南,理16】(1)如图,在圆中,相交于点的两弦,的中点分别是,,直线与直线相交于点,证明:(1);(2)
【2015高考新课标1,理24】选修4—5:不等式选讲已知函数=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.
【2015高考新课标1,理23】选修4-4:坐标系与参数方程 在直角坐标系中,直线:=2,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系. (Ⅰ)求,的极坐标方程; (Ⅱ)若直线的极坐标方程为,设与的交点为, ,求的面积.
【2015高考新课标1,理22】选修4-1:几何证明选讲如图,AB是O的直径,AC是O的切线,BC交O于E.(Ⅰ)若D为AC的中点,证明:DE是O的切线;(Ⅱ)若,求∠ACB的大小.