(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点 已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)(1)若a=1,b=–2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
若实数x,y满足x2+y2+8x-6y+16=0,求x+y的最小值.
求过点(0,6)且与圆C:x2+y2+10x+10y=0切于原点的圆的方程.
已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1. (1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上; (2)证明:曲线C过定点; (3)若曲线C与x轴相切,求k的值.
如图,圆O1和圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1和圆O2的切线PM、PN(M、N为切点),使得.试建立平面直角坐标系,并求动点P的轨迹方程.
求过两圆C1:x2+y2-2y-4=0和圆C2:x2+y2-4x+2y=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程.