(本小题满分14分)设椭圆(a>b>0)的左焦点为F1(-2,0),左准线 L1 与x轴交于点N(-3,0),过点N且倾斜角为300的直线L交椭圆于A、B两点。(1)求直线L和椭圆的方程;(2)求证:点F1(-2,0)在以线段AB为直径的圆上
已知圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程.
圆在,轴上分别截得弦长为和,且圆心在直线上,求此圆方程.
的顶点,的坐标分别是,,顶点在圆上运动,求的重心的轨迹方程.
如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。
如果直线l将圆平分,且不通过第四象限,求l的斜率的取值范围。