(本小题满分12分)已知函数,(Ⅰ)画出函数图像;(Ⅱ)求的值;(Ⅲ)当时,求取值的集合.
已知椭圆 C : 9 x 2 + y 2 = m 2 ( m > 0 ) ,直线 l 不过原点 O 且不平行于坐标轴, l 与 C 有两个交点 A , B ,线段 A B 的中点为 M . (Ⅰ)证明:直线 O M 的斜率与 l 的斜率的乘积为定值; (Ⅱ)若 l 过点 ( m 3 , m ) ,延长线段 O M 与 C 交于点 P ,四边形 O A P B 能否为平行四边形?若能,求此时 l 的斜率,若不能,说明理由.
如图,长方体中,,点分别在上,.过点的平面与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线与平面所成角的正弦值.
某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
记时间:"地区用户的满意度等级高于地区用户的满意度等级".假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求的概率.
中,是上的点,平分,面积是面积的倍. (Ⅰ) 求; (Ⅱ)若,,求和的长.
已知函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)证明:当时,; (Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有.