如图,三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形. (Ⅰ)求证:DM//平面APC;
(Ⅱ)求 证:平面ABC⊥平面APC;
数列中,且满足 ⑴求数列的通项公式; ⑵设,求; ⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。
如图,正四棱柱中,,点在上且. (Ⅰ)证明:平面; (Ⅱ)求二面角的大小.
一个口袋中有大小相同的2个白球和4个黑球,每次从袋中随机地摸出1个球,并换入1只相同大小的黑球,这样继续下去,求: (I)摸2次摸出的都是白球的概率; (II)第3次摸出的是白球的概率。
已知函数. (Ⅰ) 求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
(本题满分14分)已知函数. (1)求函数的定义域; (2)判断的奇偶性; (3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度为).