已知向量,,,(1)求函数的最小正周期、单调递增区间;(2)将按向量平移后得到的图象,求向量。
已知数列的前项和为,且,数列满足,且.(1)求数列,的通项公式;(2)设,求数列的前项和.
对于项数为的有穷数列数集,记,即为、、、中的最大值,并称数列是的控制数列.如、、、、的控制数列是、、、、.(1)若各项均为正整数的数列的控制数列为、、、、,写出所有的;(2)设是的控制数列,满足(为常数,、、、).求证:.
设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.(1)若λ=1,求数列的通项公式; (2)求λ的值,使数列是等差数列.
已知数列{an},,,记,,,若对于任意,A(n),B(n),C(n)成等差数列.(1)求数列{an}的通项公式;(2)求数列{|an|}的前n项和.
设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2()(1)求数列{an}的通项公式;(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,(1)在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;(2)求证:.