如图1,已知向量,且。(1)试用表示;(2)若的夹角为,求
设函数f(x)=ln x--ln a(x>0,a>0且为常数).(1)当k=1时,判断函数f(x)的单调性,并加以证明;(2)当k=0时,求证:f(x)>0对一切x>0恒成立;(3)若k<0,且k为常数,求证:f(x)的极小值是一个与a无关的常数.
已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.(1)当a=1时,求函数f(x)的最小值;(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.
已知函数f(x)=x2-1与函数g(x)=aln x(a≠0).(1)若f(x),g(x)的图像在点(1,0)处有公共的切线,求实数a的值;(2)设F(x)=f(x)-2g(x),求函数F(x)的极值.
设函数f(x)=ln x-ax,g(x)=ex-ax,其中a为实数.若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.
已知函数f(x)=ln x,g(x)=x2-bx(b为常数).(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围;(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数b的取值范围.