已知函数f(x)=ln x,g(x)=x2-bx(b为常数).(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围;(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数b的取值范围.
已知数列具有性质:①为正数;②对于任意的正整数,当为偶数时,;当为奇数时,(1)若,求数列的通项公式;(2)若成等差数列,求的值;(3)设,数列的前项和为,求证:
已知函数.(1)当时,指出的单调递减区间和奇偶性(不需说明理由);(2)当时,求函数的零点;(3)若对任何不等式恒成立,求实数的取值范围。
某企业生产某种商品吨,此时所需生产费用为()万元,当出售这种商品时,每吨价格为万元,这里(为常数,)(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.
已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.(1)求异面直线B1C1与AC所成角的大小;(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.