(本小题满分12分) 已知函数.(1)设F(x)= 在上单调递增,求的取值范围。(2)若函数与的图象有两个不同的交点M、N,求的取值范围;(3)在(2)的条件下,过线段MN的中点作轴的垂线分别与的图像和的图像交S、T点,以S为切点作的切线,以T为切点作的切线.是否存在实数使得,如果存在,求出的值;如果不存在,请说明理由.
(本小题满分12分)已知圆C过点P(1,1),且与圆M:关于直线对称.(1)求圆C的方程:(2)设Q为圆C上的一个动点,求最小值;(3)过点P作两条相异直线分别与圆C交与A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与直线AB是否平行?请说明理由.
(本小题满分12分)在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
(本小题满分12分)设数列的各项均为正数,它的前项的和为,点在函数的图像上;数列满足.其中.(1)求数列和的通项公式; (2)设,求证:数列的前项的和().
(本小题满分12分)已知函数(1)当时,求函数的最小值和最大值;(2)设的内角的对应边分别为,且,若向量与向量共线,求的值.
已知为实数,函数.(1)当时,求在处的切线方程;(2)定义:若函数的图象上存在两点、,设线段的中点为,若在点处的切线与直线平行或重合,则函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由;()设,若存在,使得成立,求实数的取值范围.