已知为实数,函数.(1)当时,求在处的切线方程;(2)定义:若函数的图象上存在两点、,设线段的中点为,若在点处的切线与直线平行或重合,则函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由;()设,若存在,使得成立,求实数的取值范围.
数列中,已知,且是1与的等差中项. (Ⅰ)求; (Ⅱ)设,记数列的前项和为,证明:
在△ ABC中, BC= 2 5 , A C = 6 , sin C = 2 sin A .
(Ⅰ)求 AB的值; (Ⅱ)求 cos A 的值.
已知α=1690o, (1)把α表示成2kπ+β的形式(k∈Z,β∈). (2)求θ,使θ与α的终边相同,且θ∈(- 4π,- 2π).
直角坐标系xoy中,角的始边为x轴的非负半轴,终边为射线l:y=x (x≥0). (1)求的值; (2)若点P,Q分别是角始边、终边上的动点,且PQ=4,求△POQ面积最大时,点P,Q的坐标.
已知数列的前n项和满足=, (1)写出数列的前3项; (2)求数列的通项公式 (3)证明:对于任意的整数,有