已知为实数,函数.(1)当时,求在处的切线方程;(2)定义:若函数的图象上存在两点、,设线段的中点为,若在点处的切线与直线平行或重合,则函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由;()设,若存在,使得成立,求实数的取值范围.
已知,满足,构成数列。(1)求数列的通项公式; (2)证明:。
解关于实数的不等式:。
已知为的三个内角的对边,如果成等差数列,,的面积为,求。
已知无穷数列中,是以10为首项,以-2为公差的等差数列;是以为首项,以为公比的等比数列,并对任意,均有成立.(Ⅰ)当时,求; (Ⅱ)若,试求的值;(Ⅲ)判断是否存在,使成立,若存在,求出的值;若不存在,请说明理由.
已知椭圆的两个焦点是与,点是椭圆外的动点,满足.点是线段与该椭圆的交点,点在线段上,并且满足.(Ⅰ)设为点的横坐标,证明;(Ⅱ)求点的轨迹的方程;(Ⅲ)试问:在点的轨迹上,是否存在点,使的面积为?若存在,求的正切值;若不存在,请说明理由.