(本小题9分)已知:空间四边形ABCD,E,F,G,H分别是AB,BC,CD,DA的中点,BD=AC.求证:四边形EFGH是菱形。
(文科)已知△OFQ的面积为,=m. (1)设,求∠OFQ正切值的取值范围; (2)设以O为中心,F为焦点的双曲线经过点Q(如图), ,当 取得最小值时,求此双曲线的方程.
(文科)已知中心在原点,焦点在x轴上的椭圆的离心率为,为其焦点,一直线过点与椭圆相交于两点,且的最大面积为,求椭圆的方程。
(理科)在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO.求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(文科)已知椭圆E:,点P是椭圆上一点。(1)求的最值。(2)若四边形ABCD内接于椭圆E,点A的横坐标为5,点C的纵坐标为4,求四边形面积的最大值。
(理科)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.