(本小题9分)已知:空间四边形ABCD,E,F,G,H分别是AB,BC,CD,DA的中点,BD=AC.求证:四边形EFGH是菱形。
设不等式的解集是,.(I)试比较与的大小;(II)设表示数集的最大数.,求证:.
在平面直角坐标系中,曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.(I)求曲线,的方程;(II)若点,在曲线上,求的值.
如图,A,B,C,D四点在同一圆上,与的延长线交于点,点在的延长线上.(Ⅰ)若,求的值;(Ⅱ)若,证明:.
设函数,.(Ⅰ)当时,证明在是增函数;(Ⅱ)若,,求的取值范围.
如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.(Ⅰ)证明:直线与直线的交点在椭圆上;(Ⅱ)若过点的直线交椭圆于两点,为关于轴的对称点(不共线),问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.