(理科)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
已知,,当为何值时, (1) 与垂直? (2) 与平行?平行时它们是同向还是反向?
已知,.试求 (Ⅰ) 的值; (Ⅱ)的值.
已知直线过定点与圆:相交于、两点. 求:(1)若,求直线的方程; (2)若点为弦的中点,求弦的方程.
曲线极坐标方程为,直线参数方程为(为参数) (1)将化为直角坐标方程 (2)与是否相交?若相交求出弦长,不相交说明理由。
椭圆的离心率为,长轴端点与短轴端点间的距离为. (Ⅰ)求椭圆的方程; (Ⅱ)过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.