(理科)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
(高考真题)如图,在中,,点在边上,且 (1)求 (2)求的长
我舰在敌岛A南偏西50°相距12海里的B处,发现敌舰正由岛沿北偏西10°的方向以10海里/时的速度航行。问我舰需以多大速度,沿什么方向航行才能用2小时追上敌舰?
(本小题满分13分)如图所示,在四边形中,,且. (1)求△的面积; (2)若,求的长.
已知,,若,求: (1)的最小正周期及对称轴方程. (2)的单调递增区间. (3)当时,函数的值域.
(高考真题)已知函数,且, (1)求的值; (2)若,,求.