设函数 f ( x ) = ln ( x + a ) + x 3 . (Ⅰ)若当 x = - 1 时 f ( x ) 取得极值,求 a 的值,并讨论 f ( x ) 的单调性; (Ⅱ)若 f ( x ) 存在极值,求 a 的取值范围,并证明所有极值之和大于 ln e 2 .
(本小题满分12分) 命题p:实数x满足x2-4ax+3a2<0,其中a<0,命题q:实数x满足x2-x-6≤0,且q是p的必要不充分条件,求a的取值范围.
( 本小题满分12分) 在数列中,,. (Ⅰ)设.证明:数列是等差数列; (Ⅱ)求数列的前项和.
(本小题满分12分) 如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=,求AB的长.
已知二次函数为常数,且)满足条件:,且方程有两个相等的实数根. (1)求的解析式; (2)求函数在区间上的最大值和最小值; (3)是否存在实数使的定义域和值域分别为和,如果存在,求出的值,如不存在,请说明理由.
已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1). (1)求f(1)、f(4)、f(8)的值; (2)若有f(x)+f(x-2)≤3成立,求x的取值范围.