设函数 f ( x ) = ln ( x + a ) + x 3 . (Ⅰ)若当 x = - 1 时 f ( x ) 取得极值,求 a 的值,并讨论 f ( x ) 的单调性; (Ⅱ)若 f ( x ) 存在极值,求 a 的取值范围,并证明所有极值之和大于 ln e 2 .
(本小题满分12分)已知定义在R上的分段函数是奇函数,当时的解析式为,求这个函数在R上的解析式并画出函数的图像,写出函数的单调区间.
设正整数构成的数列{an}使得a10k﹣9+a10k﹣8+…+a10k≤19对一切k∈N*恒成立.记该数列若干连续项的和为S(i,j),其中i,j∈N*,且i<j.求证:所有S(i,j)构成的集合等于N*.
设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.
设a,b,c是正实数,求证:aabbcc≥(abc).
设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.