已知函数 f x = 2 a x - a 2 + 1 x 2 + 1 x ∈ R ,其中 a ∈ R . (Ⅰ)当 a = 1 时,求曲线 y = f x 在点 2 , f 2 处的切线方程; (Ⅱ)当 a ≠ 0 时,求函数 f x 的单调区间与极值.
在△ABC中,, B=,=1,求和A、C.
设函数,其中. (Ⅰ)当时,求不等式的解集; (Ⅱ)若不等式的解集为,求的值.
在直角坐标系中,曲线的参数方程为(为参数) 是上的动点,点满足,点的轨迹为曲线. (1)求的方程; (2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
如图,直线过圆心,交⊙于,直线交⊙于(不与重合),直线与⊙相切于,交于,且与垂直,垂足为,连结. 求证:(1); (2).
设函数 (I)讨论的单调性; (II)若有两个极值点和,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.