已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.求:(1)求圆的直角坐标方程;(2)若是直线与圆面≤的公共点,求的取值范围.
上在第一象限内的一点,直线PA、PB分别交椭圆于C、D点,如果D恰是PB 的中点.(1)求证:无论常数a、b如何,直线CD的斜率恒为定值;(2)求双曲线的离心率,使CD通过椭圆的上焦点.
(1)求此抛物线的方程;(2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
(1)求双曲线的标准方程;(2)设F1和F2是这双曲线的左、右焦点,点P在这双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小
为2∶1,将逆时针方向转90°到QH,(1)求R点轨迹方程(2)求|RH|的最大值