(1)求双曲线的标准方程;(2)设F1和F2是这双曲线的左、右焦点,点P在这双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小
在数列中,,.(1)设,求数列的通项公式;(2)求数列的前项和.
四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E、G分别是BC、PE的中点.(1)求证:AD⊥PE;(2)求二面角E-AD-G的正切值.
求函数的最大值与最小值.
如图:长方形所在平面与正所在平面互相垂直,分别为的中点.(Ⅰ)求证:平面;(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 的位置,并证明你的结论;若不存在,请说明理由.
已知直线:(Ⅰ)求证:不论实数取何值,直线总经过一定点.(Ⅱ)若直线与两坐标轴的正半轴围成的三角形面积最大,求的方程.