(本题满分12分)(1)已知和为平面外的两平行直线,且有∥,求证:∥。(2)画出下面实物的三视图。
设数列的前项和为, 且. 设数列的前项和为,且.(1)求. (2) 设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立
(本题满分15分) 已知函数且在处取得极小值. (1)求m的值。 (2)若在上是增函数,求实数的取值范围。
(本题满分14分)已知在数列中,的前n项和, (1)求数列的通项公式; (2)令,数列的前n项和为求
(本题满分14分)在锐角三角形ABC中,已知角A、B、C所对的边分别为a、b、c,且, (1)若c2=a2+b2—ab,求角A、B、C的大小; (2)已知向量的取值范围。
(本题满分14分)已知函数. (1)求函数的单调递增区间; (2)若,,求的值.