已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
已知椭圆,过点且不过点的直线与椭圆交于
两点,直线与直线交于点. (Ⅰ)求椭圆的离心率; (Ⅱ)若垂直于轴,求直线的斜率; (Ⅲ)试判断直线与直线的位置关系,并说明理由.
设函数,. (Ⅰ)求的单调区间和极值; (Ⅱ)证明:若存在零点,则在区间上仅有一个零点.
如图,在三棱锥中,平面平面,为等边三角形,且.分别为,的中点.
(Ⅰ)求证:平面; (Ⅱ)求证:平面平面; (Ⅲ)求三棱锥的体积.
某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中"√"表示购买,"×"表示未购买.
(Ⅰ)估计顾客同时购买乙和丙的概率; (Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率; (Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
已知等差数列满足. (Ⅰ)求的通项公式; (Ⅱ)设等比数列满足,问:与数列的第几项相等?