已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
把正方形ABCD沿其对角线AC折成二面角DACB后,连结BD,得到如图所示的几何体,已知点O、E、F分别为线段AC、AD、BC的中点。 (I)求证:AB//平面EOF; (II)求二面角EOFB的大小。
已知ABC中,内角A、B、C所对边的长分别为a、b、c,tan(B+)= (I)求角B的大小; (II)若=4,a=2c,求b的值
设,点在轴上,点在 轴上,且 (1)当点在轴上运动时,求点的轨迹的方程; (2)设是曲线上的点,且成等差数列,当的垂直平分线与轴交于点时,求点坐标.
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋. (1)求该人在4次投掷中恰有三次投入红袋的概率; (2)求该人两次投掷后得分的数学期望.