(1)求此抛物线的方程;(2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
设函数R),函数的导数记为. (1)若,求a、b、c的值; (2)在(1)的条件下,记,求证:F(1)+ F(2)+ F(3)+…+ F(n)<N*); (3)设关于x的方程=0的两个实数根为α、β,且1<α<β<2.试问:是否存在正整数n0,使得?说明理由.
已知动点到定点的距离与到定直线:的距离相等,点C在直线上。 (1)求动点的轨迹方程。 (2)设过定点,且法向量的直线与(1)中的轨迹相交于两点且点在轴的上方。判断能否为钝角并说明理由。进一步研究为钝角时点纵坐标的取值范围。
在中,分别为内角所对的边,且满足 (1)求的大小; (2)若,,且求的面积.
已知,为实常数。 (I)求的最小正周期; (II)若在上最大值与最小值之和为3,求的值。
函数在同一个周期内,当时取最大值1,当时,取最小值。 (1)求函数的解析式 (2)函数的图象经过怎样的变换可得到的图象? (3)若函数满足方程求在内的所有实数根之和.